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SUMMARY

An attempt has been made to determine the importance of rolling per-

formance and other factors in the design of an interceptor which uses

collision-course tactics. A graphical method is presented for simple

visualization of attack situations. By means of diagrams showing vec-

toring limits_ that is, the ranges of interceptor position and heading

from which attacks may be successfully completed, the relative importance

of rolling performance and normal-acceleration capability in determining

the success of attacks is illustrated. The results indicate that the

reduction in success of attacks due to reduced rolling performance

(within the limits generally acceptable from the pilots' standpoint) is

very small, whereas the benefits due to substantially increasing the

normal-acceleration capability are large.

Additional brief analyses show that the optimum speed for initiating

a head-on attack is often that corresponding to the upper left-hand cor-

ner of the V-g diagram. In these cases, increasing speed beyond this

point for given values of normal acceleration and radar range rapidly

decreases the width of the region from which successful attacks can be

initiated. On the other hand, if the radar range is increased with a

variation somewhere between the first and second power of the intercep-

tor speed, the linear dimensions of the region from which successful

attacks can be initiated vary as the square of the interceptor speed.

INTRODUCTION

The present roll requirements for fighter airplanes are based

largely on pilots' opinions of the rolling ability required for normal

flying and maneuvering. In an attempt to relate the requirements more

closely to tactical needs, flight and analytical studies were conducted

iSupersedes the recently declassified NACA Research Memorandum

L58E27, by William H. Phillips, 1958.



2

previously to determine the roll requirements for pursuit-type tracking
and for evasive action (ref. 1). Manypresent and proposed interceptors,
however, do not use pursuit-type tactics, but, instead, use a collision-
course attack which is better suited for firing rockets or missiles. An
analysis of the roll requirements for these tactics was therefore con-
sidered desirable.

Detailed analyses (for example, those summarizedin ref. 2) have
been madein the past in order to obtain optimum interceptor systems
utilizing collision-course attacks. These analyses have concentrated
primarily on the design of the fire-control equipment rather than on
the design of the interceptor. For this reason little information is
available to evaluate the importance of roll performance on the effec-
tiveness of an interceptor. In the present report, calculations are
presented to show the relative effects of wide variations in the roll
performance and normal-acceleration capability. Brief analyses are also
included to showthe effect on the success of attacks of other design
factors such as speed and radar range.
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SYMBOLS

a_

an

b

C1, C 2

CZp

C_

lateral component of acceleration measured in horizontal

plane, g units

normal acceleration, g units

wing span

constants (see eq. (i0))

damping-in-roll coefficient,
8C_

rolling-moment coefficient,
Rollin_ moment

q_

CN

g

IX

KI,K 2

normal-force coefficient,
Normal force

qS

acceleration due to gravity

moment of inertia of airplane about longitudinal axis

constants (see eq. (4))
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constant (see eq. (2))

distance between detection of target and start of steady turn

distance between completion of turn and launching of missiles

distance traveled by missiles

Mach number

Mach number of attacker

rolling velocity, radians/sec

dynamic pressure, D_V 2
2

radar range of attacker

radius of turn of attacker

wing area

time

time to start of constant-radius turn

time to reach a steady bank angle

time to roll through i00 °

true airspeed

attacker velocity

average missile velocity

target velocity

weight of attacker

lateral displacement between flight paths of target and

attacker
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0

_ms_x

0

T

¢

¢o

¢

¢c

angle between flight paths of attaci_er and target at inter-
ception point (see fig. i)

angle between target flight path anti line of sight (see fig. i)

angle between flight path of attackc_r and line of sight to
target (look angle)

maximum radar look angle of attacker

air density

time constant in roll

angle of bank

final steady angle of bank

initial heading of attacker with respect to target path

heading of attacker for lead-collision course

Subscript:

max max imum

Dot over quantity denotes differentiation with respect to time.

Asterisk denotes distance expressed nondimensi_nally by dividing by
radius of turn of attacker.

ANALYS IS

Geometric Consideration_

A simplified analysis of the attack phase of an interception in

which the fighter employs collision-course tactics has been given in

reference 3. In this reference a simple geome;ric approach was employed.

This method was considered justified by compar:son with results obtained

in more exact simulations of the problem. Mos_, of the relations employed

in this section of the present report follow tle method of analysis used

in reference 3. For completeness, a derivatiol, of these relations is

given herein.

The flight path assumed for the interceptor is shown in figure i.

In the attack, which is assumed to take place fn a horizontal plane,



the target is detected by the radar of the fighter at the range R. In
practice this distance R is not fixed but has a certain probability
distribution. For the present purpose, however, a fixed average value
will be assumed. After the target is detected, the fighter continues
on a straight course for a distance ZI, which may include lag in the
action of the fire-control system of the fighter and the time required
for the fighter to roll. The fighter then enters a steady turn which
is assumedto take place at constant speed. The fighter recovers from
the turn and flies straight for a distance Z2 on a lead-collision
course appropriate to the conditions of the problem. The missiles are
then launched and travel the remaining distance _3 to the collision
point. No evasive action on the part of the target is considered.

For any given initial conditions someoptimum heading @c for the
fighter exists which places the fighter on the desired lead-collision
course. If the fighter is not initially on this desired course, the
direction of turn required is determined by a comparison of the existing
heading and the optimum heading. From the geometry of the problem and
from the knowledge that the time required for the missiles to reach the
collision point must equal the time required for the target to reach
this point, the following relations may be derived with the aid of
figure I:

R sin e = I_2 + Z})sin 7 + sgn(@c- _)r(cos _ - cos 7) + ZI sin

R cos 8 - (Z2 + Z3) c°s _ - sgn(_c - _)r(sin 7 - sin _) - lI cos

VT

sgn(Wc - _)r(7 - *) + Z1 + Z2 _3
+

vA vM

where sgn denotes the algebraic sign of a quantity. The equations

may be simplified somewhat by expressing all distances as ratios to the

radius of turn of the attacker. Therefore, let

R* = R_ Zl
r _i*- r
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and so forth. The equations then may be written

R* sin 8 (_2" Z3* )= + sin 7 + sgn(_c - _)(cos _ - cos _) + ZI* sin

R* cos % = _[sgn($c- ,)(7-,)+ Zl* + Z2*] + VT Z3* + Zl* cos , +vM
(i)

An implicit formula for the optimum heading may be derived from these

relations by setting @ = 7 = @c:

R cos 8 - KcR sin e = Z3\VM (2)

where

VT/VA + cos _c
Kc

sin @c

The asterisks have been omitted from R and _i3 in this formula because

the value of r, which may be canceled from th_ equations, does not enter

a problem involving straight flight.

As explained in reference i, certain conditions must be met for the

attack to be successfully completed. First, tl.e target must fall within

the look angle of the radar of the fighter throughout the encounter.
This relation is satisfied if

_- e =<;kmax

This relation has been applied only at the stalt of the attack because

of the difficulty of checking this condition throughout the encounter.

The look angle ordinarily decreases when the attacker starts a turn

toward the target. Because the look angle may not decrease until this

turn is started, however, a slight approximaticn is involved in applying
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this formula at the start of the attack. A second condition to be met

is that the fighter must have time to complete its turn and settle down

on the direction of the lead-collision course before the desired range

for missile firing is reached. The limiting combinations of variables

for this condition to exist are known as maneuverability limits and may

be derived from equations (i) by setting 12" = 0

R* sin 8 = 13" sin 7 + sgn(@c - _)(cos _ - cos 7) + I1"

jR* cos 8 = gn(¢ c - @)(y- _) + I1 +- 15 + I1
VAt- VM

sgn($ c - _)(sin y - sin _) + 13 cos

sin

cos + (3)

In order that the fighter should not be exposed to the defensive

armament of the target for an unduly long period, it is desirable that

the fighter should not approach too closely the tail cone of the target.

This condition, known as the vulnerability limit, may be derived from

equations (1) by setting 7 equal to a constant, the desired minimum

approach angle. The following relation which provides an explicit solu-

tion for 8 in terms of R*, @, and 7 may be derived from equa-

tions (1) by eliminating 12" between the two equations:

-K2KI + _R*2(I + KI2) - K2 2
R* sin 8 = (4)

1 + K12

where

Kl=
(VT/VA)+ cos

sin
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and

K2 : _T [-"Tlsgn(_c- _)(Y- _) + Zl*- Z3*J+-I VT Z3* + ZI* cos _/ +
vAL VM

sgn( c -  )(sin 7 - sin +

c -  )(cos 7 - cos - sin _ K I

If the analysis is to represent a monowing missile rather than a

rocket-armed interceptor, the same relations may be employed with the

exception that Z3* is set equal to zero. In the preceding formulas,

the quantity (7 - _) must be less than 2_ in order that the attacker

should make less than a 360 ° turn during the _ttack. The term sgn(_ c - @)

may become ambiguous when the values of @c or _ are large. In order

for the term to yield the correct sign in all cases, the value of

should be measured in the range _c ± 180°- For example, if _c is 80°

and @ may be given as +270° or -90 ° , the value -90 ° should be inserted

in the formula.

Graphical Method

A simple graphical or analog method of solution of the interception

problem has been found convenient for an apprDximate solution of the

problem and for visualization of various atta2k conditions. This method

is illustrated in figure 2. In this method a paper tape is marked off

to a convenient scale to represent the distance in miles traveled by the

fighter. A similar tape is marked off at intervals corresponding to the

distance traveled by the target in the time r_quired for the fighter to
travel i mile. A series of circular disks ar_ constructed with radii

corresponding to the radii of turn of the fighter at various values of

normal acceleration. In order to represent t_e flight path corresponding

to desired initial conditions, the zero of th_ fighter tape is placed at

the initial point and its direction is taken _s the initial heading of

the fighter path. The disk is placed tangent to this path at the point

at which the fighter starts to turn toward th_ target. The fighter tape

is wrapped around the disk and extended over _he path of the target until

the numbers on the fighter and target tapes a_e equal. This condition

then represents the geometric layout of a collision course. The example

shown in figure 2 does not include the effect of missile firing. This

effect may be accounted for, however, by causLng the fighter and target
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tapes to intersect at a point at which the number on the fighter tape

exceeds the number on the target tape by a given value, rather than at

a point with equal values of these numbers. The given difference repre-

sents the distance that the missile is ahead of the fighter at the time

of impact. By suitable procedures, evasive action of the target or

errors in the flight path of the fighter may be simulated. The method

becomes inconvenient, however, if it is desired to take into account

speed changes of the fighter.

Determination of Point for Effective Start

of Constant-Radius Turn

The preceding methods of analysis have assumed that the fighter

instantaneously enters a constant-radius turn, whereas in practice a

finite time is required to reach this condition. The point at which

the fighter may be considered to enter a constant-radius turn depends

upon both the rate of roll and the manner in which the normal accelera-

tion is applied. During the roll some lateral displacement of the flight

path will occur before a steady angle of bank is reached. Inasmuch as

one objective of this analysis is to study the effects of rate of roll

on the interception problem, it is desired to establish approximately

the point in the roll at which the effective start of a constant-g turn

occurs for various manners of coordination of the normal acceleration

with the roll angle. For this analysis the angle of bank is assumed to

vary, as shown in figure 3(a), from zero to a steady value _o in the

time To, in accordance with the formula:

¢ = ¢o sin2 _t (5)
2T o

This formula is arbitrarily chosen for convenience inasmuch as varia-

tions in piloting technique would result in different forms for the

variation of bank angle. Three possible types of variation of normal

acceleration which may be considered to represent extremes likely to

be encountered in practice are shown in figure 3(b). These variations

are as follows:

Case i. Pulling up to the value of normal acceleration required

in the steady turn before starting the roll

Case 2. Increasing the normal acceleration as a function of angle

of bank as required for a coordinated turn entry (vertical com-

ponent of acceleration equals i g)
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Case 3- Maintaining a normal acceleration of i g during the roll,
then pulling up to the value required in a steady turn at the
time the roll is completed

For these three conditions the variations of the lateral componentof
acceleration, given by the formula az = an sin _, have been plotted for
various values of the final normal acceleration. These variations are
illustrated for a 2g turn in figure 3(c). The effective start of the
turn was assumedto occur at the point at whicq the steady final accel-
eration would have to be applied to give the s_ne lateral velocity at
time To as that obtained by integrating the lateral acceleration.
Thus, if TI is the time to the effective start of the turn,

T1 fO T° az dt
-- = I -
To aZ,maxTo

The path obtained by drawing a curve of constant radius tangent to the
original line of flight at time T1 is not exactly equivalent to the
true path of the fighter inasmuch as the turn _following a gradual buildup
of lateral acceleration is displaced laterally from the original llne of
flight. This difference is of small importance in problems involving
high-speed aircraft, however. Thus, in a 4g t'_n entered in 2 seconds
the lateral displacement of the true path from the assumedpath would
be 26.8 feet. This distance is small comparedwith other dimensions
involved in the maneuver. For example, the distance traveled during
the turn entry would be 1,940 feet at a Machn_nber of 1.

DISCUSSION

Variables Influencing Success _f Attack

In order to appreciate the interception problems under discussion,
a visualization of the geometry of someof the attack situations is
desirable. Such a visualization for a wide v_'iety of cases may be
obtained by the analog method discussed previo1_sly. The effects of
certain variables to be discussed are illustr_,ed for a few cases in
figure 4. In this and in succeeding figures, _.peedof the airplanes is
expressed as Machnumberbased on a speed of s(,und of 971 feet per sec-
ond (corresponding to standard atmospheric coalitions between 35,500
and 80,000 feet). Inasmuchas the geometry of the attack situations is
a function of true speed, the Machnumoergivem should be interpreted
as a measure of true speed. A successful attack is illustrated in
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figure 4(a). In this case, the attacker has been vectored by ground
control to a point at which it is able to pick up and lock on the target
with its own radar. Though the initial heading of the attacker is not
the optimum, it is able, by entering a turn, to reach a collision course
in time to launch its missiles. Furthermore, the other conditions
described in the section "Analysis" for a successful attack are met.
That is, the look angles remain reasonable throughout the encounter,
and the angle of the final collision course is not too close to the tail
cone of the target.

The effect of increasing the radius of turn of the fighter (by use
of a lower-g turn) while keeping other factors constant is shown in fig-
ure 4(b). The increased-radius turn results in slightly greater target
penetration and a smaller angle off the tail cone of the target, but
the attack is still successful. A further increase in radius of turn,
however, as shownin figure 4(c), allows the target to pass the attacker
before a collision course can be established. In this example the ini-
tial conditions lie outside the maneuverability limits (eqs. (3))- If
the attacker is assumedto have a speed advantage, the attack could be
continued only as a tail chase or as a new encounter with large target
penetration. In manycases of this type, the look angle of the radar
would be exceeded and dependenceon ground vectoring would be renewed.
This encounter is therefore considered unsuccessful.

The effect of delaying the initial turn is shownin figure 4(d).
Such a delay might result, in part, from time required for the attacker
to roll. In the case shown, the attack is still successful but results
in slightly greater target penetration. Further large increases in the
delay time would result in an unsuccessful attack. The effect of dif-
ferences in time to roll out of the turn have not been considered in
subsequent calculations because the roll out of the turn could be started
before reaching the final collision-course path and could be performed
gradually with very little effect on the geometry of the problem.

From the foregoing considerations and from the formulas presented
in the section on "Analysis," factors governing the success of an attack
may be seen to be the ratio of radar range to radius of turn of the
attacker, the ratio of target speed to attacker speed, the initial posi-
tion and heading of the attacker with respect to the target path, the
allowable angle off the tail cone of the target, the time required to
enter a turn following radar acquisition, and the range at which the
missiles must be released in order for the attacker to break away and

evade the explosion or debris resulting from a hit. In the present

analysis, this range has been assumed to be short as compared with other

dimensions of the problem, a condition applicable with conventional

rockets having low explosive energy. If weapons of much greater explo-

sive energy were considered, this factor would require further
consideration.
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Effect of Rolling Performance on Suc".ess of Attack

Effect of roll rate and acceleration on t Lme to bank.- Roll require-

ments in the present military specification for handling qualities of

fighter airplanes in the high-speed condition _re expressed in terms of

the time to roll through I00 ° (ref. 4). This _ethod of stating the

requirements has the advantages of providing a convenient and reproduci-

ble measuring technique and of combining the iilfluences of maximum

rolling acceleration and maximum rolling veloc _ty in about the same way

that they enter in actual tactical maneuvers. In order to relate the

specified performance to problems of airplane _Lesign, however, it is

desirable to relate the time to roll through a given angle to the maxi-

mum rolling acceleration and maximum rolling _locity produced by the

ailerons. Figure 5 shows this relation. The curves of this figure were

calculated by the method described in reference i, which is based on the

assumption that the rolling response of the aiz'plane may be represented

as that of a system of one degree of freedom _ith inertia and damping.

The values of the time constant in roll T ar_ also shown - I.

ClppVb 2

The curves of figure 5 show that large changes in maximum rolling accelera-

tion and maximum rolling velocity are required to produce relatively small

changes in the time to roll through i00 °. For example, with a typical

value of T of 0.6 second, an increase of ailc_ron effectiveness of

60 percent would be required to reduce the tim(::to roll through i00 °

from 1.0 second to 0-75 second.

Point of effective start of constant-radi_s turn.- When the attacking

airplane detects a target and rolls into a turL to make an attack, the

important delay is the time required to start curving the flight path

rather than the time required to roll. This d(lay is a function not

only of rolling performance but also of the mal_er of coordinating nor-

mal acceleration with bank angle during the ttun entry. By the method

described in the section on "Analysis," the rat io of the time to the

effective start of a constant-radius turn to tle time required to reach

a steady bank angle has been calculated for three types of variation of

normal acceleration with bank angle. These results are shown in fig-

ure 6. This figure shows a marked decrease in the time to enter a turn

when the normal acceleration is applied at the start of the maneuver

rather than after reaching a steady bank angle. The case of a coordi-

nated turn entry gives intermediate values of delay. The case of the

coordinated turn entry has been used in the subsequent calculations as

an average representation of pilot technique for purposes of studying

the effects of rolling performance. The results shown in figure 6 indi-

cate, however, that the normal acceleration should be applied as rapidly

as possible when rolling into a turn. When the small reductions in time

to bank accomplished by large increases in aileron power are considered,
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the use of correct piloting technique to reduce the delay time appears

particularly important.

Effect of rolling performance and acceleration capability on suc-

cess of attack.- By the methods described in the section on "Analysis,"

the limiting combinations of variables required for a successful attack

may be calculated. These combinations of variables, called vectoring

limits in reference 3, are expressed herein in terms of the initial

heading of the fighter @ and the angle between the target flight path

and the line of sight between the target and the attacker e (see

fig. i). For a given value of the radar range R, these variables com-

pletely define the initial attack situation. The effect of any design

variable on the success of the attack may be judged by its effect in

broadening or narrowing the region in a plot of _ against e for

which successful attacks are possible.

The various boundaries limiting the success of the attack are

described in the section on "Analysis" as look-angle limits, maneuver-

ability limits, and vulnerability limits. Although the look-angle

limits may be calculated very simply, the other limits require the

solution of transcendental equations. These equations were solved

numerically by a method of successive approximations using a card-

programed digital computer.

Because of the large number of variables involved in the attack

equations, a large number of solutions would be required to provide a

survey of the effects of all the variables. A number of such solutions

are presented in reference 3- In the present analysis, a set of results

more accurate than could be obtained by reading values from the curves

of reference 3 was desired. For this reason, solutions were carried out

for a single set of conditions given in table I. The Mach number of the

target was taken as 1.0 and that of the attacker as 1.5. The variables

considered were the normal-acceleration capability of the attacker (2

to 6g) and the time (or distance ZI) required to pull into the initial

turn.

Since the method of computing the times required to pull into the

initial turn is somewhat arbitrary, it is now described. These times

were based on three conditions, namely: instantaneous turn entry, turn

entry with time to roll corresponding to the requirement of i second to

roll through i00 °, and turn entry with time to roll corresponding to a

much reduced requirement of 4 seconds to roll through i00 °. The cor-

responding rolling performance, determined from figure 5 and from the

methods of reference i, is as given in the following table (T = 1.2 sec):
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Time to roll through

i00 °, se c

0

1

4

Pmax,

radians/se c

oO

5.42
.63

_nax,

radians/s,,_ c2

4.51

.52

Time to roll to and

stop at 90 ° bank,

To, sec

0

i. 20

4. i0

Inasmuch as the angles of bank corresponding _o the values of steady

acceleration of 2 to 6g are somewhat less th_l 90 ° , the times to reach

these angles were reduced from that required no roll 90 °. This reduc-

tion was carried out by an approximate method because the use of the

single-degree-of-freedom calculations, such as those used to determine

the time to roll to and stop at 90 ° bank, was considered more time-

consuming than necessary. The time history of bank angle for the 90 °

bank case was assumed to be given by the slne-squared variation used in

equation (5) with the value of To given in nhe preceding table. The

time histories of bank angle for the cases of smaller bank angles were

obtained by assuming the time history in each case to be identical with

that of the 90 ° bank case up to one-half of t_le final bank angle. The

time to reach this point was then doubled to obtain the time to reach

the final bank angle. This procedure, in eff,,_ct, assumes that the ini-

tial rolling acceleration remains the same in each case. The times to

the effective start of the steady turns were then determined by multi-

plying these times by the factor, determined from figure 6, to take into

account the buildup of acceleration in a coordinated turn entry. The

resulting times and distances to pull into the turn are given in the

following table :

Angle of Time to ITime to enter I Distance to enter

an, g units bank, deg roll, sec Iturn, T1, sec Iturn at M = 1.5, miles

TIO 0 = I sec

60.0

7o.5
75.5
78.5
8o.4

0.94

1.03
1.08

1.i0
i.12

o.552
•662

•730
.776
•810

o.152
•183
•202
.212.
.223

TIO 0 = 4 sec

60.O

7O. 5

75-5
78.5
8O.4

3.21
3-53
3.68
3.76
3.82

1.89
2.26

2.49
2.64

2.76

O.522
•624
.688

•73O
•763



Vectoring limits for the cases calculated are given in figure 7-
This figure showsthe look-angle limits, maneuverability limits, and
vulnerability limits for all the conditions of normal acceleration and
rolling performance. For each condition, the region enclosed by the
limiting boundaries is the region of successful attacks. The boundaries
are antisymmetrical about the axes of _ and @. For this reason, the
curves on one side of the axes have been cut off in order to permit a
larger scale for the remainder of the figure. The look-angle limits
are shownonly for Xmax = 90°. For any other value of hmax, however,
the look-angle limits would be straight 45° lines passing through the
value of Xmax on the _-axis.

Discussion of factors influencin 6 choice of rollin 6 performance.-

The data of figure 7 show that the variations in normal-acceleration

capability, over the range presented, have a much greater influence on

the success of the attacks than the variations in rolling character-

istics. The case of very low rolling performance (lO0 ° in 4 seconds)

was chosen primarily to produce enough change in the vectoring limits

to be clearly visible in figure 7. Such low rolling performance in a

fighter would be entirely unsatisfactory from the pilots' standpoint.

The choice of rolling performance to be provided in a fighter air-

plane is difficult because many desirable features may need to be com-

promised to satisfy the pilots' preference for high rolling performance.

For example, the problem of roll coupling may require increases in

vertical-tail size, structural beef-up, or the provision of automatic

control systems. Conflicting requirements may exist between ailerons

and high-lift devices. Provision of high rolling performance at high

values of dynamic pressure may require special types of ailerons, such

as spoilers, which complicate the lateral-control system and which may

be less satisfactory than other designs in flight regimes such as landing

approach or spin recovery. For this reason, the actual tactical benefits

to be derived from high rolling performance should be closely examined.

For the collision-course attack situation considered herein, it is

evident from the vectoring limits plotted in figure 7 that if the rolling

performance must be reduced as a result of design problems such as roll

coupling, conflict with high-lift devices, and so forth, only a slight

reduction in the probability of successful attacks is to be expected.

On the other hand, any aerodynamic feature that results in a substantial

increase in normal-acceleration capability has a marked beneficial effect

on the success of attacks. Every effort, therefore, should be made to

improve the normal-acceleration capability of interceptors.

The success of attacks has been shown to increase with normal-

acceleration capability and with rolling performance. Increasing the

rolling performance, however, usually requires some increase in struc-

tural weight which, if other factors are held constant, reduces the
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normal-acceleration capability. For this restricted situation, then,

the determination of an optimum rolling performance should be possible.

An attempt has been made to carry out such an analysis for the conditions

considered in figure 7. This analysis applieE only at high altitudes

where the maximum normal acceleration is limiled by lift coefficient.

As shown in figure 7, the radar look angle becomes an important factor

in determining the success of attacks at the l igher values of normal

acceleration. The analysis is therefore applicable at values of normal

acceleration below about 4g, where the normal acceleration and rolling

performance are the factors primarily influencing the success of attacks.

In order to optimalize the rolling performance, a measure of the

success of the attack in terms of the vectorirLg limits is required. As

shown in figure 7, the changes in vectoring lfmits caused by changes in

the variables an and TlO O are fairly uniform throughout the range of

values of @ and 8 (except near the values corresponding to the ideal

collision course, where no maneuvering is required to intercept the

target). For this reason, increments of e at @ = o have been selec-

ted as representative of the changes caused by roll performance and

acceleration capability. Since the weight is assumed to vary as a func-

tion of roll performance, the optimum aileron power may be obtained by

satisfying the relation

d8 - o (6)
dw

The increments of 8 are attributed to changcs in aileron power, as

measured by the time to roll through i00 ° TIO 0 and to changes in maxi-

mum normal acceleration an. Equation (6) ma_ therefore be expressed:

88 dTlo0 88 dan
+ 0 (7)

_TIo 0 dw 8an dw

By dividing the denominator by the weight, fr_.ctional rather than

absolute changes in weight are considered. Tlis procedure is used to

make the results more generally applicable to airplanes of various

weights. Equation (7) then becomes

ae a lOO 8e
• + - 0

8TIO 0 dw/w 8an dw/w



_D

17

The methods for obtaining the various terms in this expression are

discussed. First, consider the terms _8/_TIo 0 amd _8/_a n. Thenow

increments of e at 9 = 0 were determined from the data of figure 7

and plotted as functions of TI00 and of an, and the slopes were

determined graphically. Though figure 7 is plotted to a scale too small

to allow incremental changes in e to be measured accurately, the orig-

inal digital-computer solutions provide adequate accuracy. The slope

_8/_TI00 was found to remain fairly constant at values of normal accel-

eration of 3g and greater. This value was taken as -1.8 ° per second.

The slope _e/_an was taken as 15.i ° per g.

dan

The term d-_/w' the variation of maximum normal acceleration with

fractional increase in gross weight, is simply equal to -an,ma x at

altitudes for which the maximum normal acceleration is limited by lift

coefficient. A value of 3g was assumed for an,max.

dTl00
Finally, the term is considered. In general, improvement

dw/w

in rolling performance is sought by increasing the rolling moment applied

to the airplane. This change may be accomplished by increasing the

aileron size or deflection range, by adding auxiliary control surfaces

such as spoilers, or by stiffening the wing structure to avoid adverse

aeroelastic effects. The increased rolling moment does not change the

time constant in roll T. The weight increment due to the change, how-

ever, is likely to be added in the wings and therefore increases the
moment of inertia in roll. The effect of increased inertia is to increase

the time constant T without changing the maximum rolling velocity. A

change in wing stiffness might also affect the damping in roll and thereby

change T, but this effect is neglected in the subsequent analysis.

dTlo0

In order to determine dw-_' the effects of the increased rolling

moment and the increased time constant are considered separately and

added. This procedure is expressed by the following formula:

dTlo0

\_Pmax dw/w/Tdw/w

+ ] (81
_T dw/w max

The subscripts to the terms in parentheses indicate the quantities held

constant. The second term of this formula is further expanded as follows:
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/ ioo _ / i00 ®max

<" _'r dw/ Pmax \bbmax bT dw/w 1 Pmax

(9)

The data of figure 5 are used to evaluate the terms in these formulas.

Inasmuch as this figure was calculated on the assumption that the rolling

response is represented by a single-degree-of-freedom system, the fol-

lowing relation holds:

• Pmax
Pmax -

T

hence,

I_Pmax I _ -Pmax _ -Pm_x

T2 T

If this expression is substituted in equation '9) and in turn in equa-

tion (8), the resulting expression may be plac,_d in the following form

which is convenient for numerical evaluation:

dTlo0

dw/w

/bTlo0 dPmax/Pmaxl _ {_TI(_O dT/T_

-_Pmax Pmax dw/w /T _7_m_ Pmax dw/W/pma x

In evaluating the first term, the variations of TIO 0 with Pmax

for various constant values of T were cross-_lotted from figure 5.

The slopes bTloo/_Pmax and the corresponding values of Pmax were

dPnax/Pmax which expresses
read from these cross plots. The quantity lw/w '

the fractional increase in rolling velocity per fractional increase in

gross weight, is dependent on the individual airplane design. A range

of values is subsequently assumed for this para_neter. The use of a non-

dimensional form for this parameter makes it prDportional to the frac-

tional increase in rolling moment, which as mentioned previously, is

the primary variable used to produce an increase in rolling performance.
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O4
kO

In evaluating the second term in this expression, the variations

of TIO 0 with Pmax for constant values of Pmax were cross-plotted

from figure 5, and the slopes \_Pmax_/Pmax

of Pmax were read from the cross plots.

and the corresponding values

dT/T

The quantity dw-_' the frac-

tional increase in T per fractional increase in gross weight, is pro-

portional to the fractional increase in moment of inertia in roll per

fractional increase in gross weight. Two values have been assumed for

this parameter, 0 and i0. The value of 0 corresponds to the case in

which all the added weight is in the fuselage, as might occur if the

aileron actuator power were increased. The value of i0 corresponds to

a case in which all the added weight is near the wing tips, as might

occur with increased aileron size, increase in wing stiffness, and so

forth• Detailed knowledge of the airplane design would be required to

determine the actual value to be used in a particular case. The values

assumed, however, probably bracket the values likely to be encountered

in practice.

The results of this analysis are shown in figure 8 as plots of the

aP ax/Pm 
optimum time to roll through lO0 ° as a function of for

dw/w

three values of T. Figure 8(a) shows the case for _ = 0 and fig-
dw/w

ure 8(b) shows the case for dT/T _ i0. The interpretation of these

dw/w

figures is as follows: If an increment of rolling velocity is costly

in terms of weight /(low value of dPmax/Pmax-]_\ 7' the optimum rolling per-
k I

formance is low, whereas if an increment of rolling velocity is obtain-

able with little weight penalty igh value of dw/w /, the optimum

rolling performance is high. A low value of T results in a greater

optimum rolling performance. If the weight increase results in an

increase in moment of inertia in roll, the optimum rolling performance

is decreased somewhat.

dPmax/Pmax

The quantity dw/w is difficult to estimate without a detailed

knowledge of an airplane design. If it is assumed that an increment of
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maximumrolling velocity would require a pro])ortional increase in the
weight attributable to the aileron control system, a value of about _0
(50 percent increase in rolling velocity for I percent increase in gross
weight) would seemreasonable for current designs. This value would
generally place the optimum rolling performsl.ce higher than the require-
ment of i second to roll through I00o.

The weight penalty involved in increasing rolling performance at
high altitude actually maynot provide a valid measure of the price to
be paid for increased rolling performance, in fact, increased rolling
velocity at high altitude might be possible _ith little or no increase
in weight, because the structure, designed f<r higher loading conditions
at low altitude, would already be strong enough to withstand increased
aileron loads. In practice, the aileron loa_s becomecritical at low
altitude, where increased wing stiffness musl be provided to avoid aileron
reversal. At low altitude, however, the increased weight does not reduce
the normal-acceleration capability, which is fixed at the specified limit
load factor. Tile increased weight would reduce the acceleration capability
at high altitude. Under these conditions, tke foregoing analysis would
not apply. Somerelative importance would hsve to be assigned to the
success of attacks at low and high altitude in order to arrive at a
decision as to the optimum rolling performancs.

Further consideration would have to be given to the effect of
increased weight on range, payload, or other performance items in order
to evaluate fully the effect of an increase i_ rolling ability. These
factors are mentioned simply to emphasize further that a limited analysis
such as that described herein cannot give a complete answer to the prob-
lem of optim_n aileron effectiveness. In view of the complicated nature
of the problem and the need for knowledge of _he design considerations
of an individual airplane, the results of the foregoing analysis should
not be applied quantitatively. The method used, however, may serve as
a guide for similar _nalyses of problems imvoLying tactical considerations.

In the preceding analysis, no considerat Lonhas been given to the
effects of evasive action of the target. For collision-course attacks
in which a side approach is used, little rolling on the part of the
attacker would be required to counter target llaneuvers. In tail-chase
approaches, the requirements would be similar to those for pursuit-type
attacks discussed in reference i. This type (,f approach, however, is
not likely to be used because it fails to tak(_ advantage of the benefits
of the collision-course attack in reducing th( effectiveness of tail
defense weaponsof the target. The case of a head-on approach requires
further analysis. Preliminary considerations indicate, however, that
the relative importance of rolling performanc_ and normal-acceleration
capability for this case would be similar to _hat determined by neglecting
evasive action by the target.
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Effect of Interceptor Speed and Radar Range

on Success of Attack

The preceding analysis has shownthe relative importance of roll
performance and normal-acceleration capability on the success of attacks.
The equations presented in the section on "Analysis" show, however, that
interceptor speed and radar range are also important variables in deter-
mining the success of attacks. For this reason, limited analyses have
been madeto show someof the effects of these variables.

Effect of interceptor speed.- A complete analysis of the effect of

a variable such as interceptor speed would require the calculation of

vectoring limits, such as those given in figure 7, for a range of values

of interceptor speed. In order to simplify the calculations, the pres-

ent analysis has been restricted to the case of head-on attacks (_ _ O)

with various values of lateral displacement (sometimes called offset)

of the flight paths of the attacker and target. The effect of missile

firing was omitted from these calculations because, for the short-range

missiles assumed previously, the effect of the missiles on the geometry

of the interceptions was small. The minimum angle of the attacker from

the target path was again assumed to be 30o . The maximum lateral dis-

placement from which an attack can be successfully completed is shown

as a function of attacker Mach number for a typical case in figure 9-

The conditions assumed are as given in table II. The curves were cal-

culated with the aid of equations (3) and (4).

Th_ results show that the allowable lateral displacement increases

to a maximum at a particular value of attacker speed and decreases with

further increase in speed. The optimum speed is generally that at which

a transition occurs from maneuvers limited by the maximum usable mor_l-

force coefficient to those limited by the maximum allowable acceleration.

In other words, the optimum speed is that corresponding to the upper

left-hand corner of the V-g diagram. This condition might not always

apply, as shown by the curve for CN, max = 1.0, for which a slightly

higher speed is seen to be beneficial. The peak of the curve of lateral

displacement as a function of attacker Mach number for the case of con-

stant normal acceleration occurs at progressively higher values of Mach

number as the radar range is increased. Also, the speed corresponding

to the upper left-hand corner of the V-g diagram is reduced at low

altitude. In cases of long radar range or low altitude, therefore, the

maximum point of the curve of lateral displacement against Mach number

is likely to occur at a Mach number higher than the speed corresponding

to the upper left-hand corner of the V-g diagram. Unfortunately, because

of the complication of the equations, no simple expression can be derived

for the speed at which this maximum point occurs. A number of solutions

of equation (4) would be required to plot the curve for each case of

interest as was done in preparing figure 9-
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In order to avoid long exposure to the defensive armamentof the
target and also to avoid large look angles during the latter stages of
the attack, a reasonable margin of speed ol the attacker over the target
would appear desirable. Therefore, in the absence of a complete analysis
of the opt_tun attack speed in a head-on altack, a reasonable rule appears

to be to make the attack at a speed corresponding to the upper left-hand

corner of the V-g diagram unless this speed is less than the target speed,

in which case a speed higher than the target speed should be used. If

the altitude is so high that the speed corrssponding to the upper left-

hand corner of the V-g diagram cannot be re_ched, the attack should be

made at the highest speed possible. These zalculations were made on the

assumption of constant attacker speed. If _lowdown occurred during the

attack, approximate compensation for this v_riation could be made by

starting the attack at a somewhat higher sp_ed, so that the average

speed during the attack would correspond to the calculated value.

The foregoing example, as mentioned pr_,_viously, is limited to the

case of head-on attacks. The optimum attaci{ speeds would not be expected

to differ greatly for small deviations from the head-on attack situation.

For the case of arbitrary initial heading, _1owever, the solution is much

more complicated. The optimum attack speed would be different for paths

displaced to the left or right of the desir,_d collision-course path.

Further investigation is required to study _,his general problem.

Effect of radar range.- Increasing the radar range of the attacker

is always beneficial in that it increases tile area from which successful

attacks are possible. An optimum radar range cannot be determined,

therefore, without considering adverse effects of a larger radar on the

speed or range of the interceptor. These cc,nsiderations are beyond the

scope of this report. A simple example can be given, however, to show

how the radar range should increase with interceptor speed in order to

allow runs requiring geometrically similar n aneuvers on the part of the

interceptor. The ability to perform such similar runs would seem desir-

able in order to take full advantage of increased speed capabilities of

an interceptor. An increase in speed alone, without an increase in radar

range, is shown in figure 9 to be undesirable because the region for

initiation of successful head-on attacks at _iven values of normal accel-

eration and radar range decreases rapidly with increasing interceptor

speed.

A typical attack situation in which the interceptor is initially

in a somewhat unfavorable position is shown in figure i0. The required

ratio of radar range to radius of turn of th _-attacker is plotted as

a function of the ratio of target speed to attacker speed. The curve

has the form

R CI VT-= --+C 2
r VA
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Since r is proportional to VA2 , the variation of required radar range

with VA has the form

R ClVTVA+ C2VA2 (i0)

Thus the radar range required to make an attack of this type varies some-

where between the first and second power of the interceptor speed.

Although this simple form of the equations holds only when the initial

point of the attack is on the projected flight path of the target, the

actual variation for other initial conditions tends to have a similar

form. The linear dimensions of the region from which successful attacks

requiring geometrically similar maneuvers of the attacker can be started

vary as the square of the attacker speed. Increased attacker speed is

therefore highly beneficial if it is accompanied by increased radar

range to the extent indicated by equation (i0).

CONCI//DING REMARKS

In the analysis of this report, an attempt has been made to deter-

mine the relative importance of rolling performance and certain other

factors in the design of an interceptor which uses collision-course

tactics. A graphical method is presented for simple visualization of

attack situations.

By means of diagrams showing vectoring limits, that is, the ranges

of interceptor position and heading from which attacks may be success-

fully completed, the relative importance of rolling performance and

normal-acceleration capability in determining the success of attacks

is illustrated. In order to determine the optimum rolling performance,

an attempt is made to balance the adverse effects of the weight penalty

due to the ailerons against the benefits due to increased rolling per-

formance. This analysis indicates that a high rolling performance is

most favorable. This analysis, however, neglects many practical con-

siderations which may make the provision of high rolling effectiveness

difficult. The vectoring limits indicate that the reduction in success

of attacks due to reduced rolling performance (within limits generally

acceptable from the pilots' standpoint) is very small, whereas the

advantage that may be gained by substantially increasing the normal-

acceleration capability is large.

The analysis also indicates important effects of interceptor speed

and radar range on the success of attacks. The optimum speed for initia-

tion of a head-on attack is often that corresponding to the upper left-

hand corner of the V-g diagram. In these cases, increasing speed beyond
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this point for given values of normal acceleration and radar range

rapidly decreases the width of the region frcm which successful attacks

can be initiated. On the other hand, if the radar range is increased

with a variation somewhere between the first and second power of the

interceptor speed, the linear dimensions of the region from which suc-

cessful attacks can be initiated increase as the square of the interceptor

speed.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Langley Field, Va., May 16, 1958.
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TABLE I

CONDITIONS FOR VECTORING-LIMIT CALCULATIONS

Attacker Mach number ...................... 1.5

Target Mach number ....................... 1.0

Missile Mach number (average) ................. 2.5

Missile firing range, Z3, miles ................ 0.690

Radar ra_e, R, miles ..................... 12

Minimum angle from target path (for vulnerability-limit

calculation), deg ...................... 30

(hence 7 = _-- radians)
6
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TABLE II

CONDITIONS FOR CALCIYI_TION OF LATE)%AL DISPLACI_iENT

OF FLIGHT PATHS IN HEAD-0N ATTACKS

Target Mach number ........................ 1.0

Radar range, R, miles ...................... 6

Maximum normal acceleration of attacker, g traits ......... 6

Attacker wing loading, ib/sq ft ................. 70

Altitude, ft .......................... 35,000

_i, Z3 .............................. 0
Minimum angle from target path (for vulnerab: lity-limit

calculation), deg ....................... 30

(hence Y = _-- radians)

6
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Figure 3.- Variations of angle of bank, normal acceleration, and lateral

acceleration with time in 2g turn entry for three types of variation

of normal acceleration with bank angle.
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Figure 5.- Relation between time to roll through a bank angle of i00 °

and values of maximum rolling velocity and maximumrolling accelera-
tion. Values of time constant in roll T are also shown.
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Figure 7.- Vectoring limits for a rocket-armed fighter flying at

M = 1.5 attacking a target at M = 1.0. Relative effects of

rolling performance and normal-acceleration capability are shown.

Other conditions of encounter are given in table I.
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Figure 9.- Maximum lateral displacement fron which an attack can be

successfully completed as a function of _ttacker Mach number.

Target Mach number = 1.O: radar range = _ miles. Effects of limited

normal-force coefficient and limited nonmal acceleration are shown.

Long-dashed line divides plot into regions in which the attacker

path includes or does not include a final straight segment with an
angle of 30 ° to the target path.
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Figure i0.- Variation of ratio of radar range to radius of turn with

ratio of target speed to attacker speed for the attack situation

shown.
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